Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 23(6): 1612-1619, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742419

RESUMO

Retarded growth and neurodegeneration are hallmarks of the premature aging disease Cockayne syndrome (CS). Cockayne syndrome proteins take part in the key step of ribosomal biogenesis, transcription of RNA polymerase I. Here, we identify a mechanism originating from a disturbed RNA polymerase I transcription that impacts translational fidelity of the ribosomes and consequently produces misfolded proteins. In cells from CS patients, the misfolded proteins are oxidized by the elevated reactive oxygen species (ROS) and provoke an unfolded protein response that represses RNA polymerase I transcription. This pathomechanism can be disrupted by the addition of pharmacological chaperones, suggesting a treatment strategy for CS. Additionally, this loss of proteostasis was not observed in mouse models of CS.


Assuntos
Síndrome de Cockayne/patologia , Proteostase , Animais , Linhagem Celular , Síndrome de Cockayne/genética , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Mutação/genética , Estresse Oxidativo , Biossíntese de Proteínas , Dobramento de Proteína , RNA Polimerase I/genética , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia
2.
J Liposome Res ; 28(1): 49-61, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27788618

RESUMO

Quality by design principles (QbD) were used to assist the formulation of prednisolone-loaded long-circulating liposomes (LCL-PLP) in order to gain a more comprehensive understanding of the preparation process. This approach enables us to improve the final product quality in terms of liposomal drug concentration, encapsulation efficiency and size, and to minimize preparation variability. A 19-run D-optimal experimental design was used to study the impact of the highest risk factors on PLP liposomal concentration (Y1- µg/ml), encapsulation efficiency (Y2-%) and size (Y3-nm). Out of six investigated factors, four of them were identified as critical parameters affecting the studied responses. PLP molar concentration and the molar ratio of DPPC to MPEG-2000-DSPE had a positive impact on both Y1 and Y2, while the rotation speed at the formation of the lipid film had a negative impact. Y3 was highly influenced by prednisolone molar concentration and extrusion temperature. The accuracy and robustness of the model was further on confirmed. The developed model was used to optimize the formulation of LCL-PLP for efficient accumulation of the drug to tumor tissue. The cytotoxicity of the optimized LCL-PLP on C26 murine colon carcinoma cells was assessed. LCL-PLP exerted significant anti-angiogenic and anti-inflammatory effects on M2 macrophages, affecting indirectly the C26 colon carcinoma cell proliferation and development.


Assuntos
Lipossomos/química , Prednisolona/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Lipídeos/química , Camundongos , Tamanho da Partícula , Polietilenoglicóis/química , Prednisolona/farmacologia , Propriedades de Superfície
3.
PLoS One ; 12(6): e0179843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28636660

RESUMO

The nucleolus has long been considered to be a pure ribosome factory. However, over the last two decades it became clear that the nucleolus is involved in numerous other functions besides ribosome biogenesis. Our experiments indicate that the activity of RNA polymerase I (Pol I) transcription monitors the integrity of the DNA and influences the response to nucleolar stress as well as the rate of survival. Cells with a repressed ribosomal DNA (rDNA) transcription activity showed an increased and prolonged p53 stabilisation after UVC-irradiation. Furthermore, p53 stabilisation after inhibition and especially after UVC-irradiation might be due to abrogation of the HDM2-p53 degradation pathway by ribosomal proteins (RPs). Apoptosis mediated by highly activated p53 is a typical hallmark of Cockayne syndrome cells and transcriptional abnormalities and the following activation of the RP-HDM2-p53 pathway would be a possible explanation.


Assuntos
RNA Polimerase I/metabolismo , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta , Apoptose/efeitos da radiação , Linhagem Celular , Células HCT116 , Humanos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/antagonistas & inibidores , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Estabilidade Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , RNA Polimerase I/genética , RNA Ribossômico/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Oncol Rep ; 37(4): 2472-2480, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260079

RESUMO

The role of tumor-associated macrophages (TAMs) in the development of colon carcinoma is still controversial. Therefore, the present study aimed to investigate the TAM­driven processes that may affect colon cancer cell proliferation. To achieve this purpose, murine macrophages were co-cultured with C26 murine colon carcinoma cells at a cell density ratio that approximates physiological conditions for colon carcinoma development in vivo. In this respect, the effects of TAM-mediated angiogenesis, inflammation and oxidative stress on the proliferative capacity of C26 murine colon carcinoma cells were studied. To gain insight into the TAM-driven oxidative stress, NADPH oxidase, the main pro-oxidant enzyme in macrophages, was inhibited. Our data revealed that the stimulatory effects of TAMs on C26 cell proliferation may be related mainly to their pro-oxidant actions exerted by NADPH oxidase activity, which maintains the redox status and the angiogenic capacity of the tumor microenvironment. Additionally, the anti-inflammatory and pro-angiogenic effects of TAMs on tumor cells were found to create a favorable microenvironment for C26 colon carcinoma development and progression. In conclusion, our data confirmed the protumor role of TAMs in the development of colon carcinoma in an oxidative stress-dependent manner that potentiates the angiogenic capacity of the tumor microenvironment. These data may offer valuable information for future tumor-targeted therapies based on TAM 're-education' strategies.


Assuntos
Neoplasias do Colo/patologia , Macrófagos/citologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/imunologia , Citocinas/metabolismo , Humanos , Macrófagos/imunologia , Camundongos , Estresse Oxidativo , Microambiente Tumoral
5.
Oncol Lett ; 12(2): 1183-1191, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27446416

RESUMO

Previous studies have demonstrated that tumor-associated macrophages (TAMs) are pivotal players in tumor progression via modulation of tumor angiogenesis, inflammation, metastasis and oxidative stress, as well as of the response of cancer cells to cytotoxic drugs. Nevertheless, the role of TAMs in the prognosis of colorectal cancer remains controversial. Therefore, the present study aimed to investigate how TAMs mediate the response of C26 colon carcinoma cells to the cytotoxic drug 5-fluorouracil (5-FU), upon TAM co-cultivation with these cancer cells in vitro. In this respect, 5-FU cytotoxicity was assessed in C26 cells in standard culture and in a co-culture with peritoneal macrophages, the production of NF-κB was determined by western blot analysis, and the production of angiogenic/inflammatory proteins in each experimental model was evaluated by protein array analysis. To gain further evidence of the effect of TAMs on oxidative stress, malondialdehyde was measured through high-performance liquid chromatography, and the total nonenzymatic antioxidant levels and the production of nitrites were measured through colorimetric assays. The results demonstrated that TAMs exerted a dual role in the response of C26 cells to 5-FU administration in the co-culture model. Thus, on one side, TAMs sensitized C26 cells to 5-FU administration through inhibition of the production of inflammatory and angiogenic proteins in these cancer cells; however, they also protected cancer cells against 5-FU-induced oxidative stress. Collectively, the present findings suggest that the combined administration of 5-FU with pharmacological agents that prevent TAMs to maintain the physiological range of tumor cell oxidative stress may highly improve the therapeutic potential of this drug.

6.
Cancer Lett ; 356(2 Pt B): 946-52, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25444912

RESUMO

Statins possess antitumor actions at doses 100- to 500-fold higher than those needed to lower cholesterol levels. Thus, the antitumor efficacy of statins could be improved greatly by using tumor-targeted delivery systems. Therefore the present work aims to investigate the antitumor activity of long-circulating liposome-encapsulated simvastatin (LCL-SIM) versus free SIM in B16.F10 murine melanoma-bearing mice. Our results showed that LCL-SIM inhibits strongly the B16.F10 melanoma growth (by 85%) whereas free SIM was ineffective. Moreover, the antitumor activity of LCL-SIM depends on the presence of functional tumor-associated macrophages (TAM) in tumor tissue and is mainly based on the reduction of the TAM-mediated oxidative stress as well as of the production of the hypoxia-inducible factor 1 α (HIF-1 α) in tumors. In conclusion, our findings suggest that the antitumor activity of LCL-SIM on B16.F10 melanoma growth is a result of the tumor-targeting property of the liposome formulation and is tightly dependent on the presence of TAM in tumor tissue.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Lipossomos , Macrófagos/efeitos dos fármacos , Melanoma Experimental/prevenção & controle , Neovascularização Patológica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Sinvastatina/administração & dosagem , Animais , Western Blotting , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/patologia , Masculino , Malondialdeído/metabolismo , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Sinvastatina/farmacologia , Células Tumorais Cultivadas
7.
J Liposome Res ; 25(4): 261-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25487170

RESUMO

Simvastatin (SIM) is a lipophilic statin that has potential benefits for prevention and treatment of several types of malignancies. However, its low water solubility and the toxicity associated with administration of high doses recommend it for encapsulation in carriers able to deliver the therapeutic dose in the tumor. In this work, liposomes with long-circulating properties were proposed as delivery systems for SIM. The objective of this study was to optimize the formulation of SIM-loaded long-circulating liposomes (LCL-SIM) by using D-optimal experimental design. The influence of phospholipids concentration, phospholipids to cholesterol molar ratio and SIM concentration was studied on SIM liposomal concentration, encapsulation efficiency and liposomal size. The optimized formulation had liposomal SIM concentration 6238 µg/ml, EE % of 83.4% and vesicle size of 190.5 nm. Additionally we evaluated the in vitro cytotoxicity of the optimized liposomal SIM (LCL-SIM-OPT) on C26 murine colon carcinoma cells cultivated in monoculture as well as in co-culture with murine peritoneal macrophages at a cell density ratio that provides an approximation of physiological conditions of colon carcinoma development in vivo. Our preliminary studies suggested that LCL-SIM-OPT exerted cytotoxicity on C26 cells probably via enhancement of oxidative stress in co-culture environment.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sinvastatina/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Lipossomos , Camundongos , Tamanho da Partícula , Sinvastatina/química , Sinvastatina/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais Cultivadas
8.
Nanoscale ; 5(13): 6013-22, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23715524

RESUMO

There is a need for new strategies for noninvasive imaging of pathological conditions within the human body. The approach of combining the unique physical properties of noble-metal nanoparticles with their chemical specificity and an easy way of conjugation open up new routes toward building bio-nano-objects for biomedical tracking and imaging. This work reports the design and assessment of a novel class of biocompatible, highly sensitive SERS nanotags based on chitosan-coated silver nanotriangles (Chit-AgNTs) labeled with para-aminothiophenol (p-ATP). The triangular nanoparticles are used as Raman scattering enhancers and have proved to yield a reproducible and strong SERS signal. When tested inside lung cancer cells (A549) this class of SERS nanotags presents low in vitro toxicity, without interfering with cell proliferation. Easily internalized by the cells, as demonstrated by imaging using both reflected bright-light optical microscopy and SERS spectroscopy, the particles are proved to be detectable inside cells under a wide window of excitation wavelengths, ranging from visible to near infrared (NIR). Their high sensitivity and NIR availability make this class of SERS nanotags a promising candidate for noninvasive imaging of cancer cells.


Assuntos
Quitosana , Materiais Revestidos Biocompatíveis , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/química , Prata , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Quitosana/química , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Teste de Materiais , Prata/química , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...